collapse into the baseline as the temperature reaches 67 °C, but no new signal that would suggest an averaging of the resonances is observed. However, a 2-D NMR chemical exchange experiment at 37 °C indicates bridging hydrogen exchange with a rate con-

Extended reaction (30 °C, 48 h) of HRu₄(CO)₁₂BH₂ with excess KH results in double deprotonation to form the dianion $[HRu_4(CO)_{12}B]^{2-}$, as evidenced by its NMR spectra. The second proton is apparently removed from the remaining Ru-H-B bond in contrast to Fehlner and co-workers' observation that in the formation of [Fe₄(CO)₁₂BH]²⁻ from [HFe₄(CO)₁₂BH]⁻ the second proton was apparently removed from the "hinge" Fe-H-Fe bond. 13 This result is in agreement with Fehlner's prediction that the dianion would result from the removal of both protons from the Ru-H-B bonds with the remaining hydrogen bridging the hinge Ru-Ru bond.¹⁴ The ¹H NMR spectrum of [HRu₄(CO)₁₂B]²⁻ consists of a sharp signal at -20.09 ppm, a typical region for Ru-H-Ru bridging hydrides.⁵ In [Fe₄(CO)₁₂BH]²⁻ the ¹H NMR spectrum has a broad signal at -8.7 ppm, consistent with an Fe-H-B bridging hydrogen. The IIB NMR spectrum of [HRu₄(CO)₁₂B]²⁻ consists of a broad singlet at 159 ppm, a difference of 18.1 ppm from the 11B signal of the monoanion. The ¹¹B NMR spectrum of [Fe₄(CO)₁₂BH]²⁻ consists of a singlet at 153 ppm, a difference of only 3 ppm from that of the monoanion, indicating that the loss of the second proton has little effect on the boron environment. A difference of 18 ppm from 140.9 to

159 ppm indicates that the removal of the second proton from [HRu₄(CO)₁₂BH]⁻ has a much greater effect on the environment of the boron atom.

At elevated temperature the hydrogen in [HRu₄(CO)₁₂B]²⁻ is fluxional. At 30 °C a new broad signal at -16.81 ppm is observed and the resonance at -20.09 ppm is broadened. At 50 °C the signal at -20.09 ppm is no longer apparent. No further changes occur in the spectrum at temperatures up to 65 °C, the highest temperature observed. Returning the temperature to 30 °C results in the reappearance of the signal at -20.09 ppm and the disappearance of the signal at -16.81 ppm, with some decomposition to H₄Ru₄(CO)₁₂,⁵ as evidenced by the appearance of a signal at

The apparent removal of the proton from the second Fe-H-B in the iron dianion to form [Fe₃(CO)₁₂B]³⁻ results in the cluster becoming ¹¹B NMR silent. ^{13a} On the other hand, removal of the second Ru-H-B proton does not produce the same result.

Reprotonation of the mono- and dianion results in the re-formation of the neutral HRu₄(CO)₁₂BH₂ cluster in moderate yields. $H_4Ru_4(CO)_{12}$ was also found in the reprotonation products.

Acknowledgment. We thank the National Science Foundation for support of this work through Grant CHE 88-00515. FAB mass spectra and NMR spectra were obtained at The Ohio State University Chemical Instrumentation Center (funded in part by National Science Foundation Grant No. 79-10019 and National Institutes of Health Grant No. 1 S10 PRO140518-01A).

Supplementary Material Available: Listings of crystal data, bond distances, bond angles, positional parameters, and anisotropic thermal parameters (5 pages); a table of calculated and observed structure factor amplitudes (16 pages). Ordering information is given on any current masthead page.

Additions and Corrections

1988, Volume 27

Toru Amari, Shigenobu Funahashi, and Motoharu Tanaka*: Dilatometric Studies on Reaction Volumes for the Formation of Nickel(II) Complexes in Aqueous Solution.

Page 3369. The figure just below eq 2 should read 7.1 instead of -7.1. Page 3370. In the last column in Table IV, the third and fourth entries should read 7.1 and 8.1, respectively, instead of -7.1 and -8.1.—Shigenobu Funahashi

⁽¹⁴⁾ Fehlner, T. P. Comments on Inorganic Chemistry; Gordon & Breach Science Publishers Inc.: London, 1988; Vol. 7, No. 6, p 326.

Chipperfield, A. K.; Housecroft, C. E.; Rheingold, A. L. Organometallics 1990, 9, 681.